2 resultados para Anterior

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinal degeneration causes vision impairment and blindness in humans. If one day we are to harness the potential of stem cell-based cell replacement therapies to treat these conditions, it is imperative that we better understand normal retina development. Currently, the genes and mechanisms that regulate the specification of the neuroretina during vertebrate eye development remain unknown. Here, we identify sine oculis-related homeobox 3 (Six3) as a crucial player in this process in mice. In Six3 conditional-mutant mouse embryos, specification of the neuroretina was abrogated, but that of the retinal pigmented epithelium was normal. Conditional deletion of Six3 did not affect the initial development of the optic vesicle but did arrest subsequent neuroretina specification. Ectopic rostral expansion of Wnt8b expression was the major response to Six3 deletion and the leading cause for the specific lack of neuroretina, as ectopic Wnt8b expression in transgenic embryos was sufficient to suppress neuroretina specification. Using chromatin immunoprecipitation assays, we identified Six3-responsive elements in the Wnt8b locus and demonstrated that Six3 directly repressed Wnt8b expression in vivo. Our findings provide a molecular framework to the program leading to neuroretina differentiation and may be relevant for the development of novel strategies aimed at characterizing and eventually treating different abnormalities in eye formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several congenital syndromes associated with anterior segment (AS) anomalies can lead to impaired vision and glaucoma, such as nail-patella syndrome (NPS), caused by mutations in the LIM homeodomain transcription factor LMX1B and Axenfeld-Rieger's syndrome (ARS), caused by mutations in the bicoid-related homeodomain transcription factor PITX2. Targeted mutations in lmx1b and pitx2 and RNA in situ analysis reveal that both genes are required for AS development and are co-expressed within the periocular mesenchyme, suggesting they participate in a shared genetic pathway. Lmx1b homozygous mutants display iris and corneal stroma hypoplasia, and defects in ciliary body formation. In contrast, pitx2 homozygous mutants exhibit a more severe phenotype: the AS chamber, corneal endothelium, and extraocular muscles (EOM) fail to develop. The absence of EOM in pitx2 mutants suggests pitx2 acts upstream of lmx1b, or that other lmx1b family members, such as lmx1a, can compensate for lmx1b function. Lmxla/lmx1b double homozygous mutants have a reduced capacity to generate EOM, implying that lmx1 gene products have a redundant function in EOM development and that lmx1 family members may act downstream of pitx2. However, analysis of pitx2 expression in the AS tissues of lmx1b mutants and reciprocal studies of lmx1b expression in pitx2 mutants indicate that these genes do not function in a simple linear pathway. Instead, lmx1b and pitx2 may regulate a shared set of downstream targets or both genes may work in parallel transcribing unique targets required for a common biological process. Ultrastructural analysis of lmx1b and pitx2 mutant corneas indicates that collagen fibrillogenesis is perturbed, revealing a common role for both genes in the deposition of extracellular matrix. Furthermore, lmx1b/pitx2 double heterozygotes develop corneal opacities not observed in single heterozygotes demonstrating that lmx1b and pitx2 genetically interact. Data suggests that defects in the basement membrane of the corneal endothelium underlie the opacities observed in double heterozygotes. Additionally, double heterozygotes develop anterior synechias that occlude the trabecular meshwork, potentially blocking aqueous humor drainage. These data suggest that lmx1b and pitx2 are responsible for ECM deposition in multiple cell types and imply that such defects may contribute to the glaucomas observed in NPS and ARS patients. ^